Patterns
We see patterns in virtually everything we constantly, usually provides comic relief, or may be used in

encounter in everyday life. a more malevolent role to put bureaucratic or self-serving
Consider action-adventure movies—more specifically roadblocks in the way of Hero&Sidekick. A dramatic
action-adventure defective movies with comic overtones. pattern is being established.
We can define patterns for Hero&Sidekick, For a somewhat more technical example, consider a
CaptainWhoManagesHero, CriminalwithaHeart, and mobile phone. The following patterns are obvious:
many more. MakeCall, LookUpNumber, and GetMessages among

For example, CaptainWhoManagesHero is invariably ~ many. Each of these patterns can be described once and
(lder, wears a fie (Hero doesn™t), yells at Hero&Sidekick then reused in software for any mobile phone.)

CHAPTER 7 REQUIREMENTS ENGINEERING 201

Design: Discusses how the analysis pattern can be achieved through the use of
known design patterns.

Known uses: Examples of uses within actual systems.

Related patterns: One or more analysis patterns that are related to the named pat-
tern because the analysis pattern (1) is commonly used with the named pattern, (2) is
structurally similar to the named pattern, (3) is a variation of the named pattern.

Examples of analysis patterns and further discussion of this topic are presented in
Chapter 8.

—aD,

In an ideal requirements engineering context, the inception, elicitation, and elabo-
ration tasks determine customer requirements in sufficient detail to proceed to sub-
sequent software engineering steps. Unfortunately, this rarely happens. In reality, the
customer and the developer enter into a process of negotiation, where the customer
may be asked to balance functionality, performance, and other product or system
characteristics against cost and time to market. The intent of this negotiation is to
develop a project plan that meets the needs of the customer while at the same time
reflecting the real-world constraints (e.g., time, people, budget) that have been
placed on the software team.

@ cake in such o way that everyone believes ha |

The best negotiations strive for a “win-win” result.!” That is, the customer wins
by getting the system or product that satisfies the majority of the customer’s needs,
and the software team wins by working to realistic and achievable budgets and
deadlines.

17 Dozens of books have been written on negotiating skills (e.g., [LEWOO], [FAR97], [DON96]). It is one
of the more important things that a young (or old) software engineer or manager can learn. Read one.

PART TWO SOFTWARE ENGINEERING PRACTICE

Boehm [BOE98] defines a set of negotiation activities at the beginning of each
software process iteration. Rather than a single customer communication activity,
the following activities are defined:

1. Identification of the system or subsystem'’s key stakeholders.

2. Determination of the stakeholders’ “win conditions.”

3. Negotiate of the stakeholders’ win conditions to reconcile them into a set of
win-win conditions for all concerned (including the software team).

Successful completion of these initial steps achieves a win-win result, which becomes
the key criterion for proceeding to subsequent software engineering activities.

The Art of Negotiation

Learning how to negotiate effectively can serve
you well throughout your personal and
technical life. The following guidelines are well worth
considering:

1. Recognize that it’s not a competition. To be
successful, both parties have to feel they've won or
achieved something. Both will have to compromise.

2. Map out a strategy. Decide what you'd like to

achieve; what the other party wants to achieve, and
how you'll go about making both happen.

Listen actively. Don’t work on formulating your
response while the other party is talking. Listen. Its

w

>,

likely you'll gain knowledge that will help you to
better negotiate your position.

4. Focus on the other party’s inferests. Don't take hord
positions if you want fo avoid conflict.

5. Don't let it get personal. Focus on the problem that
needs fo be solved.

6. Be creative. Don't be afraid to think out of the box if
you're at an impasse.

7. Be ready fo commit. Once an agreement has been
reached, don’t waffle: commit fo it and move on.

/

SAFEHOME

surg 1o take off my techie
Look, Lisa, | think we

for the home securily

management is talking. qb@& -
already been doing

“gee whiz” appeal. We're going to
markefing campaign around it.

When |

review
requirements,
what questions
should | ask?

CHAPTER 7 REQUIREMENTS ENGINEERING 203

As each element of the analysis model is created, it is examined for consistency,
omissions, and ambiguity. The requirements represented by the model are priori-
tized by the customer and grouped within requirements packages that will be
implemented as software increments and delivered to the customer. A review of the
analysis model addresses the following questions:

Is each requirement consistent with the overall objective for the
system/product?

Have all requirements been specified at the proper level of abstraction? That
is, do some requirements provide a level of technical detail that is inappro-
priate at this stage?

Is the requirement really necessary or does it represent an add-on feature
that may not be essential to the objective of the system?

Is each requirement bounded and unambiguous?

Does each requirement have attribution? That is, is a source (generally, a
specific individual) noted for each requirement?

Do any requirements conflict with other requirements?

Is each requirement achievable in the technical environment that will house
the system or product?

Is each requirement testable, once implemented?

Does the requirements model properly reflect the information, function, and
behavior of the system to be built?

Has the requirements model been “partitioned” in a way that exposes
progressively more detailed information about the system?

Have requirements patterns been used to simplify the requirements model?
Have all patterns been properly validated? Are all patterns consistent with
customer requirements?

206

PART TWO SOFTWARE ENGINEERING PRACTICE

7.12. What do you think happens when requirements validation uncovers an error? Who is in-
volved in correcting the error?

7.13. Using the template presented in Section 7.6.2, suggest one or more analysis patterns for
an application suggested by your instructor.

7.14. Describe an analysis pattern in your own words.
7.15. What do use-case “exceptions” represent?

7.16. What does “win-win” mean in the context of negotiation during the requirements engi-
neering activity?

7.17. Briefly discuss each of the elements of an analysis model. Indicate what each contributes
to the model, how each is unique, and what general information is presented by each.

Because it is pivotal to the successful creation of any complex computer-based system, require-
ments engineering is discussed in a wide array of books. Hull and her colleagues (Requirements
Engineering, Springer-Verlag, 2002), Bray (An Introduction to Requirements Engineering, Addison-
Wesley, 2002), Arlow (Requirements Engineering, Addison-Wesley, 2001), Gilb (Requirements En-
gineering, Addison-Wesley, 2000), Graham (Requirements Engineering and Rapid Development,
Addison-Wesley, 1999) and Sommerville and Kotonya (Requirement Engineering: Processes and
Techniques, Wiley, 1998) are but a few of many books dedicated to the subject. Dan Berry
(http://se. uwaterloo.ca/~dberry/bib.html) has published a wide variety of thought provoking
papers on requirements engineering topics.

Lauesen (Software Requirements: Styles and Techniques, Addison-Wesley, 2002) presents a
comprehensive survey of requirements analysis methods and notation. Weigers (Software Re-
quirements, Microsoft Press, 1999) and Leffingwell and his colleagues (Managing Software Re-
quirements: A Unified Approach, Addison-Wesley, 2000) present a useful collection of
requirement best practices and suggest pragmatic guidelines for most aspects of the require-
ments engineering process.)

Robertson and Robertson (Mastering the Requirements Process, Addison-Wesley, 1999) pre-
sent a very detailed case study that helps to explain all aspects of the software requirements
analysis and the analysis model. Kovitz (Practical Software Requirements: A Manual of Content
and Style, Manning Publications, 1998) discusses a step-by-step approach to requirements
analysis and a style guide for those who must develop requirements specifications. Jackson
(Software Requirements Analysis and Specification: A Lexicon of Practices, Principles and Prejudices,
Addison-Wesley, 1995) presents an intriguing look at the subject from A to Z (literally). Ploesch
(Assertions, Scenarios and Prototypes, Springer-Verlag, 2003) discusses advanced techniques for
developing software requirements.

windle and Abreo (Software Requirements Using the Unified Process, Prentice-Hall, 2002) discuss
requirements engineering within the context of the Unified Process and UML notation. Alexander
and Steven (Writing Better Requirements, Addison-Wesley, 2002) present a brief set of guidelines for
writing clear requirements, representing them as scenarios, and reviewing the end result.

Use-case modeling is often the driver for the creation of all other aspects of the analysis
model. The subject is discussed at length by Bittner and Spence (Use-Case Modeling, Addison-
Wesley, 2002), Cockburn [COCO01], Armour and Miller (Advanced Use-Case Modeling: Software
Systems, Addison-Wesley, 2000), Kulak and his colleagues (Use Cases: Requirements in Context,
Addison-Wesley, 2000), and Schneider and Winters (Applying Use Cases, Addison-Wesley, 1998).

A wide variety of information sources on requirements engineering and analysis are avail-
able on the Internet. An up-to-date list of World Wide Web references that are relevant to re-
quirements engineering and analysis can be found at the SEPA Web site:
http://www.mhhe.com/pressman.

Key

CoNCEPTS
behavioral
dass-hased

domaln analysis

structured analysis
rules of thumb

- BUILDING THE |
ANALY“s;s;Mom

~ tatechnical level, soﬁware engmeering begms with a s (
tasks that lead to a specification of requirements and mmprehcnswe
s ol design representation for the software to be built. The analysis model, ac-
tually a set of models, is the first technical representation of a system.
- In a seminal book on analysis modeling methods‘ Tom DeMarco [DEM79] de-
scribes the process in this way: '

Looking back over the recognized problems and faﬂmgs of the analysis phase, I sug-
gest that we need to make the following additions to our set of analysis phase goals:

e The products of analysis must be highly maintainable. This applies particularly
to the Target Document [software requirements specification].

+ - Problems of size must be dealt with using an effective method of partitioning.
The Victorian novel specification is out.

. Graphics have to be used whenever possible.

¢ We have to differentiate between logical [essential] and physical [implementa-
tion] considerations

At the very least, we need . . .

¢ Something to help us partition our requirements and document that partition-
ing before specification . . .

¢ Some means of keepmg track of and evaluating interfaces .

¢ New tools to describe logic and policy, something better than narrative text

Although DeMarco wrote about the attributes of analysis modeling more than a
quarter of a century ago, his comments still apply to modem analysis modeling
methods and notation.

207

210

Many useful resources
for domeln analysis con
befondat
www.itwis.com/
English/Software

SE_modS.osp.

PART TWO SOFTWARE ENGINEERING PRACTICE

8.1.2 Analysis Rules of Thumb

Arlow and Neustadt [ARLO2] suggest a number of worthwhile rules of thumb that
should be followed when creating the analysis model:

e The model should focus on requirements that are visible within the problem or
business domain. The level of abstraction should be relatively high. “Don’t get
bogged down in details” [ARL02] that try to explain how the system will work.

e Each element of the analysis model should add to an overall understanding of
software requirements and provide insight into the information domain,
Jfunction, and behavior of the system.

e Delay consideration of infrastructure and other non-functional models until
design. For example, a database may be required, but the classes necessary
to implement it, the functions required to access it, and the behavior that will
be exhibited as it is used should be considered only after problem domain
analysis has been completed.

e Minimize coupling throughout the system. It is important to represent relation-
ships between classes and functions. However, if the level of “interconnect-
edness” is extremely high, efforts should be made to reduce it.

e Be certain that the analysis model provides value to all stakeholders. Each
constituency has its own use for the model. For example, business stake-
holders should use the model to validate requirements; designers should use
the model as a basis for design; QA people should use the model to help plan
acceptance tests.

e Keep the model as simple as it can be. Don’t add additional diagrams when
they provide no new information. Don’t use complete notational forms, when
a simple list will do.

8.1.3 Domain Analysis

In our discussion of requirements engineering (Chapter 7), we noted that analysis
patterns often reoccur across many applications within a specific business domain.
If these patterns are defined and categorized in a manner that allows a software en-
gineer or analyst to recognize and reuse them, the creation of the analysis model is
expedited. More important, the likelihood of applying reusable design patterns and
executable software components grows dramatically. This improves time to market
and reduces development costs.

But how are analysis patterns recognized in the first place? Who defines them,
categorizes them, and readies them for use on subsequent projects? The answers to
these questions lies in domain analysis. Firesmith [FIR93] describes domain analysis
in the following way:

Software domain analysis is the identification, analysis, and specification of common re-
quirements from a specific application domain, typically for reuse on multiple projects

CHAPTER 8 BUILDING THE ANALYSIS MODEL 211

m Input and output for domain analysis

Sources of
domain

knowledge

Technical literature

//\ Class taxonomies

Existing applications

\ Reuse standards

Customer surveys / Domai Domain
Y in Functional models analysis
Expert advice \ analysis model
Domain languages
Current/future requirements \

within that application domain . . . [Object-oriented domain analysis is] the identification,
analysis, and specification of common, reusable capabilities within a specific application
domain, in terms of common objects, classes, subassemblies, and frameworks.

The “specific application domain” can range from avionics to banking, from multime-
dia video games to software embedded within medical devices. The goal of domain
analysis is straightforward: to find or create those analysis classes and/or common
functions and features that are broadly applicable, so that they may be reused.?

lshumhrshmd but little af a time.”

In a way, the role of a domain analyst is similar to the role of a master toolsmith
in a heavy manufacturing environment. The job of the toolsmith is to design and
build tools that may be used by many people doing similar but not necessarily the
same jobs. The role of the domain analyst* is to discover and define reusable analy-
sis patterns, analysis classes, and related information that may be used by many
people working on similar but not necessarily the same applications.

Figure 8.2 [ARA89] illustrates key inputs and outputs for the domain analysis
process. Sources of domain knowledge are surveyed in an attempt to identify objects
that can be reused across the domain.

One view of analysis modeling, called structured analysis, considers data and the
processes that transform the data as separate entities. Data objects are modeled in
a way that defines their attributes and relationships. Processes that manipulate data

3 A complementary view of domain analysis “involves modeling the domain so that software engi-
neers and other stakeholders can better learn about it . . . not all domain classes necessarily result
in the development of reusable classes” [LETO03].

4 Do not make the assumption that because a domain analyst is at work, a software engineer need
not understand the application domain. Every member of a software team should have some un-
derstanding of the domain in which the software is to be placed.

214

%S
o,

POINT
Attributes name o dote
object, describe its
characteristics, and, in
some cases, make
reference fo another
object.

normaizofion” i

important to those who
-intend fo.do thorough
dato modling.A

useful infroduction con

Data Objects and OO Classes—
Are They the Same Thing?

A common question occurs when data objects
are discussed: Is a data object the same thing as an
object-oriented class? The answer is no.

A data object defines a composite data item; that is, it
incorporates a collection of individual data items
(aftributes) and gives the collection of items a name (the
name of the data object). An OO class encapsulates data
(ﬁributes but also incorporates the operations that

PART TWO SOFTWARE ENGINEERING PRACTICE

8.3.2 Data Attributes

Data attributes define the properties of a data object and take on one of three differ-
ent characteristics. They can be used to (1) name an instance of the data object,
(2) describe the instance, or (3) make reference to another instance in another table.
In addition, one or more of the attributes must be defined as an identifier—that is,
the identifier attribute becomes a “key” when we want to find an instance of the data
object. In some cases, values for the identifier(s) are unique, although this is not a re-
quirement. Referring to the data object car, a reasonable identifier might be the ID
number.

The set of attributes that is appropriate for a given data object is determined
through an understanding of the problem context. The attributes for car might
serve well for an application that would be used by a Department of Motor Vehi-
cles, but these attributes would be useless for an automobile company that needs
manufacturing control software. In the latter case, the attributes for car might also
include 1D number, body type, and color, but many additional attributes (e.g., interior
code, drive train type, trim package designator, transmission type) would have to be added
to make car a meaningful object in the manufacturing control context.

D,

manipulate the data implied by those affributes. In
addifion, the definition of classes implies a comprehensive
infrastructure that is part of the object-oriented software
engineering approach. Classes communicate with one
another via messages; they can be organized into
hierarchies; they provide inheritance characteristics for
objects that are an instance of a class.

J

2%
o

POINT
Relationships indicate
the manner in which
data objects are
connected to one
another.

8.3.3 Relationships

Data objects are connected to one another in different ways. Consider the two data
objects, person and car. These objects can be represented using the simple nota-
tion illustrated in Figure 8.5a. A connection is established between person and car
because the two objects are related. But what are the relationships? To determine the
answer, we must understand the role of people (owners, in this case) and cars within
the context of the software to be built. We can define a set of object/relationship
pairs that define the relevant relationships. For example,

e A person owns a car.

e A person is insured to drive a car.

D

Relationships
between data
objects

How do |
handle a
situation in which
one data object is
related to many
occurrences of
another data
object?

CHAPTER 8 BUILDING THE ANALYSIS MODEL 215

(@) A basic connection between data
objects

(b} Relationships between data
objects

The relationships owns and insured to drive define the relevant connections be-
tween person and car. Figure 8.5b illustrates these object/relationship pairs
graphically. The arrows noted in Figure 8.5b provide important information about
the directionality of the relationship and often reduce ambiguity or misinterpre-
tations.

8.3.4 Cardinality and Modality

The elements of data modeling—data objects, attributes, and relationships—provide
the basis for understanding the information domain of a problem. However, addi-
tional information related to these basic elements must also be understood.

We have defined a set of objects and represented the object/relationship pairs
that bind them. But a simple pair that states that objectX relates to objectY does not
provide enough information for software engineering purposes. We must under-
stand how many occurrences of objectX are related to how many occurrences of
objectyY. This leads to a data modeling concept called cardinality.

The data model must be capable of representing the number of occurrences of ob-
jects in a given relationship. Tillmann [TIL93] defines the cardinality of an object/re-
lationship pair in the following manner: “Cardinality is the specification of the
number of occurrences of one [object] that can be related to the number of occur-
rences of another [object].” For example, one object can relate to only one other ob-
ject (a 1:1 relationship); one object can relate to many objects (a 1:N relationship);
some number of occurrences of an object can relate to some other number of oc-
currences of another object (an M:N relationship).® Cardinality also defines “the max-
imum number of objects that can participate in a relationship” [TIL93]. It does not,
however, provide an indication of whether or not a particular data object must par-
ticipate in the relationship. To specify this information, the data model adds modal-
ity to the object/relationship pair.

6 For example, an uncle can have many nephews, and a nephew can have many uncles.

218 PART TWO SOFTWARE ENGINEERING PRACTICE

/ Class—encapsulates the data and procedural
abstractions required to describe the content and behavior
of some real world entity. Stated another way, a class is a
generalized description (e.g., a template, pattern, or
blueprint) that describes a collection of similar objects.

Objects—instances of a specific class. Objects inherit a
@ss’ atiributes and operations.

Operations—also called methods and services, provide
a representation of one of the behaviors of a class.
Subclass—a specidlization of the superclass. A
subclass can inherit both attributes and operations from a
superclass.
Superclass—also called a base class, is a
generalization of a set of classes that are related fo it.)

Although the success of a computer-based system or product is measured in many
ways, user satisfaction resides at the top of the list. If software engineers under-
stand how end-users (and other actors) want to interact with a system, the soft-
ware team will be better able to properly characterize requirements and build
meaningful analysis and design models. Hence, analysis modeling with UML be-
gins with the creation of scenarios in the form of use-cases, activity diagrams, and
swimlane diagrams.

8.5.1 Writing Use-Cases

A use-case captures the interactions that occur between producers and consumers
of information and the system itself. In this section, we examine how use-cases are
developed as part of the analysis modeling activity.’

The concept of a use-case (Chapter 7) is relatively easy to understand—describe
a specific usage scenario in straightforward language from the point of view of a de-
fined actor.'® But how do we know (1) what to write about, (2) how much to write
about it, (3) how detailed to.make our description, and (4} how to organize the de-
scription? These are the questions that must be answered if use-cases are to provide
value as an analysis modeling tool.

CovaB.

In some situations, use-
cases become the
dominant requirements
engineening mechanism,
However, this does not
mean that you should
discard the concepts and
techniques discussed in
Chapter 7.

m oid fo defining what exists outside the system (actors) and what shouldbe

What to write about? The first two requirements engineering tasks''—inception
and elicitation—provide us the information we need to begin writing use cases. Re-
quirements gathering meetings, QFD, and other requirements engineering mecha-

9 Use-cases are a particularly important part of analysis modeling for user interfaces. Interface analy-
sis is discussed in detail in Chapter 12.

10 An actor is not a specific person, but rather a role that a person (or a device) plays within a specific
context. An actor “calls on the system to deliver one of its services” [COCO1].

11 These requirements engineering tasks are discussed in detail in Chapter 7.

CHAPTER 8 BUILDING THE ANALYSIS MODEL 219

nisms are used to identify stakeholders, define the scope of the problem, specify
overall operational goals, outline all known functional requirements, and describe
the things (objects) that will be manipulated by the system.

To begin developing a set of use-cases, the functions or activities performed by a
specific actor are listed. These may be obtained from a list of required system func-
tions, through conversations with customers or end-users, or by an evaluation of ac-
tivity diagrams (Section 8.5.2) developed as part of analysis modeling.

SAFEHOME

the house while he
back video that is

The SafeHome home surveillance function (subsystem) discussed in the sidebar iden-
tifies the following functions (an abbreviated list) that are performed by the home-
owner actor:

e Access camera surveillance via the Internet.

222 PART TWO SOFTWARE ENGINEERING PRACTICE

camera” results in an error condition: “No floor plan configured for this house.”'? This
error condition becomes a secondary scenario.

Is it possible that the actor will encounter some other behavior at this point? Again
the answer to the question is yes. As steps 6 and 7 occur, the system may encounter
an alarm condition. This would result in the system displaying a special alarm noti-
fication (type, location, system action) and providing the actor with a number of op-
tions relevant to the nature of the alarm. Because this secondary scenario can occur
for virtually all interactions, it will not become part of the ACS-DCV use-case.
Rather, a separate use-case—"Alarm condition encountered”—would be developed
and referenced from other use-cases as required.

Referring to the formal use-case template shown in the sidebar, the secondary sce-
narios are represented as exceptions to the basic sequence described for ACS-DCV.

SAFEHOME

 for Surveillance

10. The system disphays,
identified by the ct

12 In this case, another actor, the system administrator, would have to configure the floor plan, in-
stall and initialize (e.g., assign an equipment ID) all cameras, and test to be certain that each is ac-
cessible via the system and through the floor plan.

CHAPTER 8 BUILDING THE ANALYSIS MODEL 223

WebRef In many cases, there is no need to create a graphical representation of a usage sce-
Whenoeyoufiished nario. However, diagrammatic representation can facilitate understanding, particu-
witing isecases? For — |arly when the scenario is complex. As we noted in Chapter 7, UML does provide

gfmsﬁmon use-case diagramming capability. Figure 8.6 depicts a preliminary use-case diagram
ootips.org/ for the SafeHome product. Each use-case is represented by an oval. Only the use-
vse-cases-done. case, ACS-DCV has been discussed in detail in this section.

htmlootips.

og/wewsess g 52 Developing an Activity Diagram

The UML activity diagram (discussed briefly in Chapters 6 and 7) supplements the use-
case by providing a graphical representation of the flow of interaction within a spe-
cific scenario. Similar to the flowchart, an activity diagram uses rounded rectangles
to imply a specific system function, arrows to represent flow through the system, de-
cision diamonds to depict a branching decision (each arrow emanating from the dia-
mond is labeled), and solid horizontal lines to indicate that parallel activities are

SafeHome
Preliminary
use-case Access camera
diagram for surveillance via the
the SafeHome Internet
system

Configure SafeHome
system parameters

224

PART TWO SOFTWARE ENGINEERING PRACTICE

FiGure 8.7

Activity
diagram for
Access
camera
surveillance—
display

camerda views
function

@
POINT

A UML activity diagram

represents the actions

and degisions that

occur as some function

is performed.

Valid passwords/ID Invalid passwords/ID

Other functions
may also
be selected

Input tries remain

@

No input,
tries remain

Thumbnail views Select a specific camera

See another camera

occurring. An activity diagram for the ACS-DCV function is shown in Figure 8.7. It
should be noted that the activity diagram adds additional detail not directly men-
tioned (but implied) by the use-case. For example, a user may only attempt to enter
userID and password a limited number of times. This is represented by a decision
diamond below prompt for reentry.

8.5.3 Swimlane Diagrams

The UML swimlane diagram is a useful variation of the activity diagram and allows
the modeler to represent the flow of activities described by the use-case and at the
same time indicate which actor (if there are multiple actors involved in a specific
function) or analysis class has responsibility for the action described by an activity

CHAPTER 8 BUILDING THE ANALYSIS MODEL 225

IR R Swimlane diagram for Access camera surveillance—display camera views function

Homeowner Camera Interface

\

valid passwords/ID

Invali
possxorgs/ D

Other functions
may also be
selected

Input tries
remain

No input
tries remain

Thumbnail views Select a specific camera

ee
another
camera

rectangle. Responsibilities are represented as parallel segments that divide the dia-

a‘%‘_ gram vertically, like the lanes in a swimming pool.

POINT Three analysis classes—Homeowner, Interface, and Camera—have direct or in-
A UML swimlane direct responsibilities in the context of the activity diagram represented in Figure 8.7.
diagrom represents Referring to Figure 8.8, the activity diagram is rearranged so that activities associated
::]3 fézzs?;:f;?,ﬁs with a particular analysis class fall inside the swimlane for that class. For example, the

indicates which octors Interface class represents the user interface as seen by the homeowner. The activity
perform each. diagram notes two prompts that are the responsibility of the interface—prompt for

228

PART TWO SOFTWARE ENGINEERING PRACTICE

Ficure 8.10

Level 1 DFD for
SafeHome
security
function

Cov$

The gremmatical parse
is not foolproof, but it
can provide you with
an excellent jump stort,
if you're struggling fo
defin data objects and
the transforms that
operate on them.

Cov=$

Be certain that the
processing narrafive
you intend to parse is
written at the same
level of ubstraction
throughout.

Control
panel
Configure
User commands 9
and data system
Configuration
Interact Configure ata
with request Configuration information i
user e
Start Confdgurohon
Password stop
A/d msg.
Process Display Control
password Valid 1D msg. messages - nel
and status . P Isplay ispla
Confdgurchon information
Sensor
information Alarm I
Monitor Alarm type
Sensor sensors Teleph
E— status Telephone eep one
number tones line

When a sensor event is recognized, the software invokes an audible alarm attached to
the system. After a delay time that is specified by the homeowner during system config-
uration activities, the software dials a telephone number of a monitoring service, provides
information about the location, reporting the nature of the event that has been detected.
The telephone number will be redialed every 20 seconds until a ion is
obtained.

The homeowner receives security information via a control panel, the PC, or a browser,
collectively called an interface. The interface displays prompting messages and system
status information on the control panel, the PC, or the browser window. Homeowner in-
teraction takes the following form. . ..

Referring to the grammatical parse, a pattern begins to emerge. Verbs are SafeHome
processes; that is, they may ultimately be represented as bubbles in a subsequent DFD.
Nouns are either external entities (boxes), data or control objects (arrows), or data
stores (double lines). Note further that nouns and verbs can be associated with one
another. For example, each sensor is assigned a number and type, therefore number
and type are attributes of the data object sensor. Therefore, by performing a gram-
matical parse on the processing narrative for a bubble at any DFD level, we can gen-
erate much useful information about how to proceed with the refinement to the next
level. Using this information, a level 1 DFD is shown in Figure 8.10. The context level
process shown in Figure 8.9 has been expanded into six processes derived from an ex-

CHAPTER 8 BUILDING THE ANALYSIS MODEL 229

Level 2 DFD
that refines the
monitor sensors
process

Sensor
information

Configuration information Sensor ID

type,

location

Configuration
ata

Sensor ID,

type

. Read
sensors

status Telephone
number tones

amination of the grammatical parse. Similarly, the information flow between
processes at level 1 has been derived from the parse. In addition, information flow
continuity is maintained between levels 0 and 1.

The processes represented at DFD level 1 can be further refined into lower levels.
For example, the process monitor sensors can be refined into a level 2 DFD as shown
in Figure 8.11. Note once again that information flow continuity has been maintained
between levels.

The refinement of DFDs continues until each bubble performs a simple function.
That is, until the process represented by the bubble performs a function that would
be easily implemented as a program component. In Chapter 9, we discuss a concept,
called cohesion, that can be used to assess the simplicity of a given function. For now,
we strive to refine DFDs until each bubble is “single-minded.”

8.6.2 Creating a Control Flow Model

For many types of applications, the data model and the data flow diagram are all that
is necessary to obtain meaningful insight into software requirements. As we have al-
ready noted, however, a large class of applications are “driven” by events rather than
data, produce control information rather than reports or displays, and process infor-
mation with heavy concern for time and performance. Such applications require the
use of contro! flow modeling in addition to data flow modeling.

We have already noted that an event or control item is implemented as a
Boolean value (e.g., true or false, on or off, 1 or 0) or a discrete list of conditions

232

POINT
The PSPEC is o “mini-
specficotion” for each
transform ot the lowest
refined level of a DFD.

PART TWO SOFTWARE ENGINEERING PRACTICE

Doug: So the next o days willbe
analysis model, huh? ~ -
Jamie (looking proud)
Doug: Good, we've got
much fime to doit.
{The three software

smile.)

8.6.4 The Process Specification

The process specification (PSPEC) is used to describe all flow model processes that ap-
pear at the final level of refinement. The content of the process specification can in-
clude narrative text, a program design language (PDL) description'? of the process
algorithm, mathematical equations, tables, diagrams, or charts. By providing a
PSPEC to accompany each bubble in the flow model, the software engineer creates
a "mini-spec” that can serve as a guide for design of the software component that
will implement the process.

To illustrate the use of the PSPEC, consider the process password transform repre-
sented in the flow model for SafeHome (Figure 8.10). The PSPEC for this function
might take the form:

PSPEC: process password (at control panel). The process password transform per-
forms password validation at the control panel for the SafeHome security function.
Process password receives a four-digit password from the interact with user function. The
password is first compared to the master password stored within the system. If the mas-
ter password matches, [valid id message = true] is passed to the message and status dis-
play function. If the master password does not match, the four digits are compared to a
table of secondary passwords (these may be assigned to house guests and/or workers
who require entry to the home when the owner is not present). If the password matches
an entry within the table, [valid id message = true] is passed to the message and status
display function. If there is no match, [valid id message = false] is passed to the message
and status display function.

If additional algorithmic detail is desired at this stage, a program design language
representation may also be included as part of the PSPEC. However, many believe
that the PDL version should be postponed until component design commences.

19 Program design language (PDL) mixes programming language syntax with narrative text to provide
procedural design detail. PDL is discussed in Chapter 11.

CHAPTER 8 BUILDING THE ANALYSIS MODEL 233

Structured Analysis

Obijective: Structured analysis tools allow a
software engineer fo create data models, flow
models, and behavioral models in a manner that enables
consistency and continuity checking and easy editing and
extension. Models created using these tools provide the
software engineer with insight into the analysis
representation and help to eliminate errors before they
propagate info design, or worse, into implementation itself.

Q

Mechanics: Tools in this category use a “data
dictionary” as the central database for the description of
all data objects. Once entries in the dictionary are
defined, entity-relationship diagrams can be created and
object hierarchies can be developed. Data flow
diagramming features allow easy creation of this
graphical model and also provide features for the creation
of PSPECs and CSPECs. Andlysis tools also enable the
software engineer fo create behavioral models using the
@te diagram as the operative notation.

SOFTWARE ToOOLS

Representative Tools?°

AxiomSys, developed by STG, Inc. {www.stgcase.com),
provides a complete structure analysis tools suite
including Hatley-Pirbhai extensions for the modeling of
real-time systems.

MacA&D, WinA&D developed by Excel Software
(www.excelsoftware.com), provides a set of simple and
inexpensive analysis and design tools for Macs and
Windows machines.

MetaCASE Workbench, developed by MetaCase
Consulting (www.metacase.com), is a metatool used to
define an analysis or design method (including
structured analysis): its concepts, rules, notations, and
generators.

System Architect, developed by Popkin Software
(www.popkin.com), provides a broad range of
analysis and design tools including tools for data
modeling and structured analysis.

J

How do we go about developing the class-based elements of an analysis model—
classes and objects, attributes, operations, packages, CRC models, and collaboration
diagrams? The sections that follow present a series of informal guidelines that will
assist in their identification and representation.

8.7.1 Identifying Analysis Classes

If you look around a room, there is a set of physical objects that can be easily iden-
tified, classified, and defined (in terms of attributes and operations). But when you
“look around” the problem space of a software application, classes (and objects) may
be more difficult to comprehend.

problemn is discovering what are the right objects [classes] in the first plocs.”

We can begin to identify classes by examining the problem statement or (using the
terminology applied earlier in this chapter) by performing a “grammatical parse” on

20 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

234

How do

analysis
dasses manifest
themselves as
elements of the
solution space?

PART TWO SOFTWARE ENGINEERING PRACTICE

the use-cases or processing narratives developed for the system to be built. Classes
are determined by underlining each noun or noun clause and entering it into a simple
table. Synonyms should be noted. If the class is required to implement a solution, then
it is part of the solution space; otherwise, if a class is necessary only to describe a so-
lution, it is part of the problem space. What should we look for once all of the nouns
have been isolated? Analysis classes manifest themselves in one of the following ways:

e External entities (e.g., other systems, devices, people) that produce or
consume information to be used by a computer-based system.

e Things (e.g., reports, displays, letters, signals) that are part of the information
domain for the problem.

e Occurrences or events (e.g., a property transfer or the completion of a series
of robot movements) that occur within the context of system operation.

e Roles (e.g., manager, engineer, salesperson) played by people who interact
with the system.

e Organizational units (e.g., division, group, team) that are relevant to an
application.

o Places (e.g., manufacturing floor or loading dock) that establish the context of
the problem and the overall function of the system.

e Structures (e.g., sensors, four-wheeled vehicles, or computers) that define a
class of objects or related classes of objects.

This categorization is but one of many that have been proposed in the literature.?!
For example, Budd [BUD96] suggests a taxonomy of classes that includes producers
(sources) and consumers (sinks) of data, data managers, view or observer classes,
and helper classes.

It is also important to note what classes or objects are not. In general, a class
should never have an “imperative procedural name” [CAS89]. For example, if the de-
velopers of software for a medical imaging system defined an object with the name
InvertImage or even Imagelnversion, they would be making a subtle mistake. The
Image obtained from the software could, of course, be a class (it is a thing that is
part of the information domain). Inversion of the image is an operation that is ap-
plied to the class. It is likely that inversion() would be defined as an operation for the
class Image, but it would not be defined as a separate class to connote “image
inversion.” As Cashman [CAS89] states: “the intent of object-orientation is to encap-
sulate, but still keep separate, data and operations on the data.”

To illustrate how analysis classes might be defined during the early stages of mod-
eling, we return to the SafeHome security function. In Section 8.6.1, we performed a

21 Another important categorization—defining entity, boundary, and controller classes—is discussed
in Section 8.7.4.

CHAPTER 8 BUILDING THE ANALYSIS MODEL 235

“grammatical parse” on a processing narrative? for the security function. Extracting
the nouns, we can propose a number of potential classes:

Potential class
homeowner
sensor

control panel
installation

system [alias security system}
number, type
master password
telephone number
sensor event
audible alarm

monitoring service

General classification
role or external entity
external entity

external entity

occurrence

thing

not objects, aftributes of sensor
thing

thing

occurrence

external entity

organizational unit or external entity

The list would be continued until all nouns in the processing narrative have been
considered. Note that we call each entry in the list a potential object. We must con-
sider each further before a final decision is made.

dasses friumph, others are eliminated.”

How do | Coad and Yourdon [COA91] suggest six selection characteristics that should be
determine used as an analyst considers each potential class for inclusion in the analysis model:
whether a

1. Retained information. The potential class will be useful during analysis only if
information about it must be remembered so that the system can function.

potential class
should, in fact,
become an 2.

analysis class? Needed services. The potential class must have a set of identifiable operations

that can change the value of its attributes in some way.

3. Multiple attributes. During requirement analysis, the focus should be on “ma-
jor” information; a class with a single attribute may, in fact, be useful during
design, but is probably better represented as an attribute of another class
during the analysis activity.

4. Common attributes. A set of attributes can be defined for the potential class,
and these attributes apply to all instances of the class.

22 It is important to note that this technique should also be used for every use-case developed as part
of the requirements gathering (elicitation) activity. That is, use-cases can be grammatically parsed
to extract potential analysis classes.

236

POINT
Attributes are the set
of data objects that
fully define the dass
within the context of
the problem.

PART TWO SOFTWARE ENGINEERING PRACTICE

5. Common operations. A set of operations can be defined for the potential
class, and these operations apply to all instances of the class.

6. Essential requirements. External entities that appear in the problem space and
produce or consume information essential to the operation of any solution
for the system will almost always be defined as classes in the requirements
model.

To be considered a legitimate class for inclusion in the requirements model, a po-
tential class should satisfy all (or almost all) of these characteristics. The decision for
inclusion of potential classes in the analysis model is somewhat subjective, and later
evaluation may cause a class to be discarded or reinstated. However, the first step of
class-based modeling is the definition of classes, and decisions (even subjective
ones) must be made. With this in mind, we apply the selection characteristics to the
list of potential SafeHome classes:

Potential class Characteristic number that applies
homeowner rejected: 1, 2 fail even though 6 applies
sensor accepted: all apply

control panel accepted: all apply

installation rejected

system (alias security function) accepted: all apply

number, type rejected: 3 fails, attributes of sensor
master password rejected: 3 fails

telephone number rejected: 3 fails

sensor event accepfed: all apply

audible alarm accepted: 2, 3, 4, 5, 6 apply
monitoring service rejected: 1, 2 fail even though & applies

It should be noted that (1) the preceding list is not all-inclusive—additional classes
would have to be added to complete the model; (2) some of the rejected potential
classes will become attributes for those classes that were accepted (e.g., number and
type are attributes of Sensor, and master password and telephone number may become
attributes of System); (3) different statements of the problem might cause different
“accept or reject” decisions to be made (e.g., if each homeowner had an individual
password or was identified by voice print, the Homeowner class would satisfy char-
acteristics 1 and 2 and would have been accepted).

8.7.2 Specifying Attributes

Attributes describe a class that has been selected for inclusion in the analysis model.
In essence, it is the attributes that define the class—that clarify what is meant by the
class in the context of the problem space.

CHAPTER 8 BUILDING THE ANALYSIS MODEL 237

To develop a meaningful set of attributes for an analysis class, a software engi-
neer can again study a use-case and select those “things” that reasonably “belong”
to the class. In addition, the following question should be answered for each class:
What data items (composite and/or elementary) fully define this class in the context
of the problem at hand?

To illustrate, we consider the System class defined for SafeHome. We have noted that
the homeowner can configure the security function to reflect sensor information, alarm
response information, activation/deactivation information, identification information,
and so forth. We can represent these composite data items in the following manner:

identification information = system ID + verification phone number + system status
alarm response information = delay time + telephone number
activation/deactivation information = master password + number of allowable tries +

temporary password

Some of the data items to the right of the equal sign could be further refined to an el-
ementary level, but for our purposes, they constitute a reasonable list of attributes
for the System class (shaded portion of Figure 8.13).

Sensors are part of the overall SafeHome system, and yet they are not listed as
data items or as attributes in Figure 8.13. Sensor has already been defined as a class,
and multiple Sensor objects will be associated with the System class. In general,
we avoid defining an item as an attribute if more than one of the items is to be as-
sociated with the class.

8.7.3 Defining Operations

Operations define the behavior of an object. Although many different types of oper-
ations exist, they can generally be divided into three broad categories: (1) operations

Class diagram
for the system
class

System

program()
display()
resel()

query()
modify()

call{)

238

anc:‘

When you define oper-
ations for an analysis
class, focus on
problem-oriented
behavior rather than
behaviors required for
implementation.

PART TWO SOFTWARE ENGINEERING PRACTICE

that manipulate data in some way (e.g., adding, deleting, reformatting, selecting),
(2) operations that perform a computation, (3) operations that inquire about the state
of an object, and (4) operations that monitor an object for the occurrence of a con-
trolling event. These functions are accomplished by operating on attributes and/or
associations (Section 8.7.5). Therefore, an operation must have “knowledge” of the
nature of the class’ attributes and associations.

As a first iteration at deriving a set of operations for an analysis class, the analyst
can again study a processing narrative (or use-case) and select those operations that
reasonably belong to the class. To accomplish this, the grammatical parse is again
studied and verbs are isolated. Some of these verbs will be legitimate operations and
can be easily connected to a specific class. For example, from the SafeHome pro-
cessing narrative presented earlier in this chapter, we see that “sensor is assigned a
number and type” or “a master password is programmed for arming and disarming
the system.” These phrases indicate a number of things:

o That an assign() operation is relevant for the Sensor class.

¢ That a program() operation is encapsulated by the System class.

e That arm() and disarm() are operations that apply to System class.
Upon further investigation, it is likely that the operation program() will be divided into
a number of more specific suboperations required to configure the system. For
example, program() implies specifying phone numbers, configuring system charac-

teristics (e.g., creating the sensor table, entering alarm characteristics), and entering
password(s). But for now, we specify programy() as a single operation.

SAFeHOME

CHAPTER 8 BUILDING THE ANALYSIS MODEL 239

' go&s for windows and doors.
few extra attributes.

E

M&w&rm for display

sense 1o me, but I do have a few more

{Jamie asks questions which result in
modifications.) =

If s0, we ought fo role play
nothing has been omitted,

Ed:” I'm not qbiie sure how

A
Is part of

Is used to build »

< Is used to build

A
Is used to build

240

PART TWO SOFTWARE ENGINEERING PRACTICE

8.7.4 Class-Responsibility-Collaborator (CRC) Modeling

Class-responsibility-collaborator (CRC) modeling [WIR90] provides a simple means for
identifying and organizing the classes that are relevant to system or product re-
quirements. Ambler [AMB95] describes CRC modeling in the following way:

A CRC model is really a collection of standard index cards that represent classes. The
cards are divided into three sections. Along the top of the card you write the name of the
class. In the body of the card you list the class responsibilities on the left and the collab-
orators on the right.

In reality, the CRC model may make use of actual or virtual index cards. The intent is
to develop an organized representation of classes. Responsibilities are the attributes
and operations that are relevant for the class. Stated simply, a responsibility is “any-
thing the class knows or does” [AMB95]. Collaborators are those classes that are re-
quired to provide a class with the information needed to complete a responsibility.
In general, a collaboration implies either a request for information or a request for
some action.

of CRC cards is to fail early, to fail often, and to fail inexpensively. It is a Iotdnupuhmwpnbmh
M be to rmm a lurge amount of source code.”

A simple CRC index card for the FloorPlan class is illustrated in Figure 8.15. The
list of responsibilities shown on the CRC card is preliminary and subject to additions
or modification. The classes Wall and Camera are noted next to the responsibility
that will require their collaboration.

A CRC model
index card

Description

Defines floor plan name/type

Manages floor plan positioning

Scales floor plan for display

Scales floor plan for display

Incorporates walls, doors and windows Wall

Shows position of video cameras Camera

An excellent discussion
of these dass types
conbe found.at -
www.theumlcafe,
com/60079 . btm.

A% What

¥ guidelines
can be applied
for allocating
responsibilities
to dasses?

CHAPTER 8 BUILDING THE ANALYSIS MODEL 241

Classes. Basic guidelines for identifying classes and objects have been presented
earlier in this chapter. The taxonomy of class types presented in Section 8.7.1 can be
extended by considering the following categories:

e Entity classes, also called model or business classes, are extracted directly
from the statement of the problem (e.g., FloorPlan and Sensor). These
classes typically represent things that are to be stored in a database and
persist throughout the duration of the application (unless they are specifically
deleted).

e Boundary classes are used to create the interface (e.g., interactive screen or
printed reports) that the user sees and interacts with as the software is
used. Entity classes contain information that is important to users, but they
do not display themselves. Boundary classes are designed with the respon-
sibility of managing the way entity objects are represented to users. For
example, a boundary class called CameraWindow would have the
responsibility of displaying surveillance camera output for the SafeHome
system.

e Controller classes manage a “unit of work” [UMLO3] from start to finish. That
is, controller classes can be designed to manage (1) the creation or update of
entity objects; (2) the instantiation of boundary objects as they obtain infor-
mation from entity objects; (3) complex communication between sets of
objects; and (4) validation of data communicated between objects or
between the user and the application. In general, controller classes are not
considered until design has begun.

4 %thmﬁd scientifically into three major categories: those that don't wrk, those that break de

Responsibilities. Basic guidelines for identifying responsibilities (attributes and
operations) have been presented in Sections 8.7.2 and 8.7.3. Wirfs-Brock and her
colleagues [WIR90] suggest five guidelines for allocating responsibilities to classes:

1. System intelligence should be distributed across classes to best ad-
dress the needs of the problem. Every application encompasses a certain
degree of intelligence, that is, what the system knows and what it can do.
This intelligence can be distributed across classes in a number of different
ways. “Dumb” classes (those that have few responsibilities) can be modeled
to act as servants to a few “smart” classes (those having many responsibili-
ties). Although this approach makes the flow of control in a system straight-
forward, it has a few disadvantages: (a) it concentrates all intelligence within
a few classes, making changes more difficult, and (b) it tends to require more
classes, hence more development effort.

242 PART TWO SOFTWARE ENGINEERING PRACTICE

If system intelligence is more evenly distributed across the classes in an
application, each object knows about and does only a few things (that are
generally well-focused), and the cohesiveness of the system is improved.
This enhances the maintainability of the software and reduces the impact of
side effects due to change.

To determine whether system intelligence is properly distributed, the re-
sponsibilities noted on each CRC model index card should be evaluated to de-
termine if any class has an extraordinarily long list of responsibilities. This
indicates a concentration of intelligence.?® In addition, the responsibilities for
each class should exhibit the same level of abstraction.

Each responsibility should be stated as generally as possible. This
guideline implies that general responsibilities (both attributes and operations)
should reside high in the class hierarchy (because they are generic, they will
apply to all subclasses).

Information and the behavior related to it should reside within the
same class. This achieves the OO principle called encapsulation. Data and the
processes that manipulate the data should be packaged as a cohesive unit.

Information about one thing should be localized with a single class,
not distributed across multiple classes. A single class should take on the
responsibility for storing and manipulating a specific type of information.
This responsibility should not, in general, be shared across a number of
classes. If information is distributed, software becomes more difficult to
maintain and more challenging to test.

Responsibilities should be shared among related classes, when ap-
propriate. There are many cases in which a variety of related objects must
all exhibit the same behavior at the same time. As an example, consider a
video game that must display the following classes: Player, PlayerBody,
PlayerArms, PlayerLegs, PlayerHead. Each of these classes has its own
attributes (e.g., position, orientation, color, speed) and all must be updated and
displayed as the user manipulates a joystick. The responsibilities update() and
display() must therefore be shared by each of the objects noted. Player
knows when something has changed and update() is required. It collaborates
with the other objects to achieve a new position or orientation, but each ob-
ject controls its own display.

Collaborations. Classes fulfill their responsibilities in one of two ways: (1) a class
can use its own operations to manipulate its own attributes, thereby fulfilling a par-
ticular responsibility, or (2) a class can collaborate with other classes.

23 In such cases, it may be necessary to split the class into multiple classes or complete subsystems
in order to distribute intelligence more effectively.

[/
L ¢

POINT

If o class cannot fulfll
all of ifs obligations
itseff, then a
collaboration is
required.

CHAPTER 8 BUILDING THE ANALYSIS MODEL 243

Wirfs-Brock and her colleagues [WIR90] define collaborations in the following way:

Collaborations represent requests from a client to a server in ful.illment of a client re-
sponsibility. A collaboration is the embodiment of the contract between the client and the
server. . . .\We say that an object collaborates with another object if, to fulfill a responsi-
bility, it needs to send the other object any messagcs. A single collaboration flows in one
direction—representing a request from the client to the server. From the client’s point of
view, each of its collaborations are associated with a particular responsibility imple-
mented by the server.

Collaborations identify relationships between classes. When a set of classes all col-
laborate to achieve some requirement, they can be organized into a subsystem (a de-
sign issue).

Collaborations are identified by determining whether a class can fulfill each re-
sponsibility itself. If it cannot, then it needs to interact with another class. Hence, a
collaboration.

As an example, consider the SafeHome security function. As part of the activa-
tion procedure, the ControlPanel object must determine whether any sensors
are open. A responsibility named determine-sensor-status() is defined. If sensors
are open, ControlPanel must set a status attribute to “not ready.” Sensor infor-
mation can be acquired from each Sensor object. Therefore, the responsibility
determine-sensor-status() can be fulfilled only if ControlPanel works in collabo-
ration with Sensor.

To help in the identification of collaborators, the analyst can examine three dif-
ferent generic relationships between classes [WIR90]: (1) the is-part-of relation-
ship, (2) the has-knowledge-ofrelationship, and (3) the depends-upon relationship.
Each of the three generic relationships is considered briefly in the paragraphs that
follow.

All classes that are part of an aggregate class are connected to the aggregate class
via an is-part-of relationship. Consider the classes defined for the video game noted
earlier, the class PlayerBody is-part-of Player, as are PlayerArms, PlayerLegs,
and PlayerHead. In UML, these relationships are represented as the aggregation
shown in Figure 8.16.

When one class must acquire information from another class, the has-knowledge-
of relationship is established. The determine-sensor-status() responsibility noted ear-
lier is an example of a has-knowledge-of relationship.

The depends-upon relationship implies that two classes have a dependency that
is not achieved by has-knowledge-of or is-part-of. For example, PlayerHead must al-
ways be connected to PlayerBody (unless the video game is particularly violent), yet
each object could exist without direct knowledge of the other. An attribute of the
PlayerHead object called center-position is determined from the center position of
PlayerBody. This information is obtained via a third object, Player, that acquires it
from PlayerBody. Hence, PlayerHead depends-upon PlayerBody.

244

PART TWO SOFTWARE ENGINEERING PRACTICE

Ficure 8.16

A composite

aggregate
class

In all cases, the collaborator class name is recorded on the CRC model index card
next to the responsibility that has spawned the collaboration. Therefore, the index
card contains a list of responsibilities and the corresponding collaborations that en-
able the responsibilities to be fulfilled (Figure 8.15).

When a complete CRC model has been developed, representatives from the cus-
tomer and software engineering organizations can review the model using the fol-
lowing approach [AMB95]:

1.

All participants in the review (of the CRC model) are given a subset of the
CRC model index cards. Cards that collaborate should be separated (i.e., no
reviewer should have two cards that collaborate).

All use-case scenarios (and corresponding use-case diagrams) should be or-
ganized into categories.

The review leader reads the use-case deliberately. As the review leader
comes to a named class, she passes a token to the person holding the corre-
sponding class index card. For example, a use-case for SafeHome contains
the following narrative:

The homeowner observes the SafeHome control panel to determine if the system is
ready for input. If the system is not ready, the homeowner must physically close
windows/doors so that the ready indicator is present. [A not-ready indicator implies
that a sensor is open, i.e., that a door or window is open.]

When the review leader comes to “control panel,” in the use-case narra-
tive, the token is passed to the person holding the ControlPanel index card.
The phrase “implies that a sensor is open” requires that the index card con-
tain a responsibility that will validate this implication (the responsibility
determine-sensor-status() accomplishes this). Next to the responsibility on the

CHAPTER 8 BUILDING THE ANALYSIS MODEL 245

index card is the collaborator Sensor. The token is then passed to the Sen-
sor class.

4. When the token is passed, the holder of the class card is asked to describe
the responsibilities noted on the card. The group determines whether one (or
more) of the responsibilities satisfies the use-case requirement.

5. If the responsibilities and collaborations noted on the index cards cannot ac-
commodate the use-case, modifications are made to the cards. This may in-
clude the definition of new classes (and corresponding CRC index cards) or
the specification of new or revised responsibilities or collaborations on exist-
ing cards.

This modus operandi continues until the use-case is finished. When all use-cases
have been reviewed, analysis modeling continues.

SAFEHOME

d's cubicle, as analysis visual devices—audio;
recorders, and so forth
With a single selection, | wart
entire house for voﬂous stmdhnﬂ&

is away, a third is:
exfendedrravel Allaf

T

and extended travel skates,
on and off at random intery

; sowmy 've been w°"'""9 conditioning syslem !shquf@ '
seffings via ﬂ\e Infernet with o

Ed: The hardware g
; interfacing figured outé
ad it blf ‘butitshould giveyou vinod (smiling): h
: biggy. Aryway, |
management, and-we dﬂ

to-use the home management use the

r an Internet connection to control Ed: Okay ... so the .
at-have wireless interface aftributes and L &w e,
uld allow me to tum specific collaborations are the b

apphonces that are point fo.

, fo set my heating and

!@t's,mpemmres that | define. To Vinod: | thought you d‘ it
the devices from a floor plan of Ed: Maybe a litfle, but go Ghead.
h device must be identified on the floor Vinod: So here's my class defini

re, | want fo control all audio-

246

Y
Yo,
POINT
An association defines
a relationship between
dlosses. Multiplicity
defines how many of
one dloss are related to
how many of another
dass.

What is a
stereotype?

PART TWO SOFTWARE ENGINEERING PRACTICE

selectControl
displaySituafion
selectSituation
accessFloorplan ..

Ed: So when the op
it collaborates with
we developed for su
of it here. (They look ot £

8.7.5 Associations and Dependencies

In many instances, two analysis classes are related to one another in some fashion,
much like two data objects may be related to one another (Section 8.3.3). In UML
these relationships are called associations. Referring back to Figure 8.14, the Floor-
Plan class is defined by identifying a set of associations between FloorPlan and two
other classes, Camera and Wall. The class Wall is associated with three classes that
allow a wall to be constructed, WallSegment, Window, and Door.

In some cases, an association may be further defined by indicating multiplicity (the
term cardinality was used earlier in this chapter). Referring to Figure 8.14, a Wall object
is constructed from one or more WallSegment objects. In addition, the Wall object
may contain 0 or more Window objects and 0 or more Door objects. These multiplic-
ity constraints are illustrated in Figure 8.17, where “one or more” is represented using
1..* and“0ormore”by0..*.In UML, the asterisk indicates an unlimited upper bound
on the range.?

In many instances, a client-server relationship exists between two analysis
classes. In such cases, a client-class depends on the server-class in some way and a
dependency relationship is established. Dependencies are defined by a stereotype. A
stereotype is an “extensibility mechanism” [ARL02] within UML that allows a software

24 Other multiplicity relations—one to one, one to many, many to many, one to a specified range with
lower and upper limits, and others—may be indicated as part of an association.

CHAPTER 8 BUILDING THE ANALYSIS MODEL 247

Ficure 8.17

Multiplicity

Dependencies

engineer to define a special modeling element whose semantics are custom-defined.
In UML stereotypes are represented in double angle brackets (e.g., «stereotype»).

As an illustration of a simple dependency within the SafeHome surveillance sys-
tem, a Camera object (in this case, the server-class) provides a video image to a Dis-
playwindow object (in this case, the client-class). The relationship between these
two objects is not a simple association, yet a dependency association does exist. In
a use-case written for surveillance (not shown), the modeler learns that a special
password must be provided in order to view specific camera locations. One way to
achieve this is to have Camera request a password and then grant permission to the
DisplayWindow to produce the video display. This can be represented as shown in
Figure 8.18 where «access» implies that the use of the camera output is controlled by
a special password.

8.7.6 Analysis Packages

An important part of analysis modeling is categorization. That is, various elements
of the analysis model (e.g., use-cases, analysis classes) are categorized in a manner

248 PART TWO SOFTWARE ENGINEERING PRACTICE

FiGure 8.19

Packages
that packages them as a grouping—called an analysis package—that is given a rep-
resentative name.
KO To illustrate the use of analysis packages, consider the video game that we intro-
duced earlier. As the analysis model for the video game is developed, a large number
POINT d 8 P 8

A package s used o of classes are derived. Some focus on the game environment—the visual scenes that
assemble o colletion LT\€ USET sees as the game is played. Classes such as Tree, Landscape, Road, Wall,
of related classes. Bridge, Building, VisualEffect, might fall within this category. Others focus on the
characters within the game, describing their physical features, actions, and con-
straints. Classes such as Player (described earlier), Protagonist, Antagonist, Sup-
portingRoles, might be defined. Still others describe the rules of the game—how a
player navigates through the environment. Classes such as Rules OfMovement and
ConstraintsOnAction are candidates here. Many other categories might exist.
These classes can be represented as analysis packages as shown in Figure 8.19.
The plus sign preceding the analysis class name in each package indicates that
the classes have public visibility and are therefore accessible from other packages.
Although they are not shown in the figure, other symbols can precede an element
within a package. A minus sign indicates that an element is hidden from all other
packages and a # symbol indicates that an element is accessible only to classes con-
tained within a given package.

H"‘:l' ;’:hl Class diagrams, CRC index cards, and other class-oriented models discussed in Sec-
%" model the
software’s tion 8.7 represent static elements of the analysis model. It is now time to make a

reaction to some Lransition to the dynamic behavior of the system or product. To accomplish this, we
external event? must represent the behavior of the system as a function of specific events and time.

(/54
LY

POINT

Use-cases are parsed
to define events. To
accomplish this, the
use-Case is examined
for points of

information exchange.

CHAPTER 8 BUILDING THE ANALYSIS MODEL 249

The behavioral model indicates how software will respond to external events or
stimuli. To create the model, the analyst must perform the following steps:

1. Evaluate all use-cases to fully understand the sequence of interaction within
the system.

2. Identify events that drive the interaction sequence and understand how these
events relate to specific classes.

3. Create a sequence for each use-case.
4. Build a state diagram for the system.

5. Review the behavioral model to verify accuracy and consistency.

Each of these steps is discussed in the sections that follow.

8.8.1 Identifying Events with the Use-Case

As we noted in Section 8.5, the use-case represents a sequence of activities that in-
volves actors and the system. In general, an event occurs whenever the system and
an actor exchange information. Recalling our earlier discussion of behavioral mod-
eling in Section 8.6.3, it is important to note that an event is not the information that
has been exchanged, but rather the fact that information has been exchanged.

A use-case is examined for points of information exchange. To illustrate, we re-
consider the use-case for a small portion of the SafeHome security function.

The homeowner uses the keypad to key in a four-digit password. The password is com-

pared with the valid password stored in the system. If the password is incorrect, the con-
trol panel will beep once and reset itseif for additional input. If the password is correct,

the control panel awaits further action.

The underlined portions of the use-case scenario indicate events. An actor should be
identified for each event; the information that is exchanged should be noted; and any
conditions or constraints should be listed.

As an example of a typical event, consider the underlined use-case phrase
“homeowner uses the keypad to key in a four-digit password.” In the context of the
analysis model, the object, Homeowner,” transmits an event to the object
ControlPanel. The event might be called password entered. The information trans-
ferred is the four digits that constitute the password, but this is not an essential part
of the behavioral model. It is important to note that some events have an explicit
impact on the flow of control of the use-case, while others have no direct impact on
the flow of control. For example, the event password entered does not explicitly
change the flow of control of the use-case, but the results of the event compare pass-
word (derived from the interaction “password is compared with the valid password

25 In this example, we assume that each user (homeowner) that interacts with SafeHome has an iden-
tifying password and is therefore a legitimate object.

250

7
o,

POINT
The system has states
that represent specific
externally observoble
behavior; o class has
states that represent
its behavior as the
system performs its
functions.

PART TWO SOFTWARE ENGINEERING PRACTICE

stored in the system”) will have an explicit impact on the information and control
flow of the SafeHome software.

Once all events have been identified, they are allocated to the objects involved.
Objects can be responsible for generating events (e.g., Homeowner generates the
password entered event) or recognizing events that have occurred elsewhere (e.g.,
ControlPanel recognizes the binary result of the compare password event).

8.8.2 State Representations

In the context of behavioral modeling, two different characterizations of states must be
considered: (1) the state of each class as the system performs its function and (2) the
state of the system as observed from the outside as the system performs its function .2

The state of a class takes on both passive and active characteristics [CHA93]. A
passive state is simply the current status of all of an object’s attributes. For example,
the passive state of the class Player (in the video game application discussed ear-
lier) would include the current position and orientation attributes of Player as well as
other features of Player that are relevant to the game (e.g., an attribute that indi-
cates magic wishes remaining). The active state of an object indicates the current status
of the object as it undergoes a continuing transformation or processing. The class
Player might have the following active states: moving, at rest, injured, being cured,
trapped, lost, and so forth. An event (sometimes called a trigger) must occur to force
an object to make a transition from one active state to another.

Two different behavioral representations are discussed in the paragraphs that
follow. The first indicates how an individual class changes state based on
external events, and the second shows the behavior of the software as a function
of time.

State diagrams for analysis classes. One component of a behavioral model is
a UML state diagram that represents active states for each class and the events (trig-
gers) that cause changes between these active states. Figure 8.20 illustrates a state
diagram for the ControlPanel class in the SafeHome security function.

Each arrow shown in Figure 8.20 represents a transition from one active state
of a class to another. The labels shown for each arrow represent the event that trig-
gers the transition. Although the active state model provides useful insight into the
“life history” of a class, it is possible to specify additional information to provide
more depth in understanding the behavior of a class. In addition to specifying the
event that causes the transition to occur, the analyst can specify a guard and an ac-
tion [CHA93]. A guard is a Boolean condition that must be satisfied in order for the

26 The state diagrams presented in Section 8.6.3 depict the state of the system. Our discussion in this
section will focus on the state of each class within the analysis model.

